
8 The Delphi Magazine Issue 52

Data-Aware HTML Controls, 2
by Steve Troxell

Back in the October issue, we
started building a markup lan-

guage engine that allowed us to
add our own tags to standard
HTML. This engine provided sup-
port for a set of Delphi classes,
which we called data objects, to
provide database access. This
combination gave us a simple lan-
guage with which we could author
data-driven web pages. Our new
tags would be dynamically
replaced with HTML and data-
driven content. Figure 1 shows an
example of standard HTML con-
taining three embedded custom
tags. It also shows how those tags
are replaced and filled with data
from a data object.

In Our Last Episode
Let’s briefly recap the system
architecture. The web pages them-
selves are authored as standard
HTML pages with custom tags
embedded in them between <% and
%> delimiters. The custom tags we
referred to as SML (Steve’s Markup
Language) just to give them a
name. These pages are referred to
as page templates because they
will be passed through a page gen-
erator which will convert the SML
tags into the applicable HTML that
is desired when the page is
requested. The final expanded
page is sent back to the browser
with data-driven content.

The markup language exten-
sions we’ve developed are simply a
custom set of tags, following XML
syntax conventions. We define the
tag name, attributes and subtags
for whatever functionality we
want. In Figure 1, the <DATAOBJECT>
tag is used to create a reference to
a particular data object; the two
<CONTROL> tags are used to create
an HTML control on the page con-
taining data from that object. Since
the tag syntax is based on XML, we
can use a standard third-party XML
parser to interpret the SML tags.

Within our markup language
engine, we have a set of tag

resolver classes that are responsi-
ble for interpreting each SML tag
we define. Each individual SML tag
maps one-to-one to a class
descending from the TTagResolver
base class we developed last time.
For example, the TDataObjectTag-
Resolver class handles all the pro-
cessing for the <DATAOBJECT> tag.
Adding new tags to the markup
language is as simple as adding
another tag resolver class to the
library.

In addition to the tag resolver
classes, we also have the data
object classes, which provide all
direct access to the database.
These classes are the interface
between the markup language and
the database. The data object
classes contain all the code to
directly access the database,
through SQL, a native API, or any
other means of data access. In the
example in Figure 1, we have a
TEmployee class which exposes all
the data elements for a given
employee, such as the employee’s
first name and last name. The
TEmployee class is responsible for
knowing how to pull those ele-
ments out of the database and pub-
lish them as properties. Web page
authors need not be concerned
about the details of the database
tables or SQL. They only need to be
familiar with the usage of the data
objects. This is the great advan-
tage of this system over others
such as ASP, iHTML and so on.

All the components of the
markup language are contained

within an application server that
runs alongside the web server. In
the actual website, links to pages
are written as calls to a CGI pro-
gram, called the router, with a
parameter that identifies the
desired page template. The CGI
program connects to the applica-
tion server which then handles all
the work of loading the page tem-
plate, parsing the SML tags,
instantiating data objects, and
replacing SML with generated
HTML. The final page is handed
back to the CGI caller, which in
turn hands it back to the web
browser.

Where We Go From Here
This month, we’ll tie together the
pieces we started on in October
and add support for capturing data
entry on the web pages and post-
ing changes in the database
through the data objects. We’re
going to build a live website using
our markup language to display
and modify the contents of the
DBDEMOS database. All the actual
code for this implementation can
be found on this month’s disk. Be
sure to read the README.TXT file
for specific setup instructions
before attempting to run the demo
software.

Displaying A Read-Only Page
Figure 2 shows a page from our
sample website and Listing 1
shows the template for that page.

HTML snippet with embedded SML tags:

<BODY>
<H3>Stats for a specific employee:</H3>
<%
<DATAOBJECT class="TEmployee" name="Emp" oid="4"/>
<CONTROL type="edit" property="Emp.FirstName"/>
<CONTROL type="edit" property="Emp.LastName"/>
%>
</BODY>

SML tags expanded into HTML with data-driven content:

<BODY>
<H3>Stats for a specific employee:</H3>
<INPUT type="text" value="Bruce">
<INPUT type="text" value="Young">
</BODY>

➤ Figure 1

10 The Delphi Magazine Issue 52

This page shows a single entry
from the Events table in the DBDEMOS
database. The URL shown in the
browser’s address box illustrates
how we call into this system to
retrieve a page. We pass parame-
ters into the CGI router which iden-
tify the page and content we want
to see. The app server is set up to
recognize certain parameters as
‘processing instructions’ which
control the actions of the app
server. All processing instructions
are parameters with names begin-
ning with PI:. The specific instruc-
tion to return a page is PI:PAGE. In
Figure 2, we are making a request
to see the page EventShow.sml,
which is the name of the file that
holds the template shown in
Listing 1.

Many pages will need some addi-
tional information to identify the
data we want to see on the page. In
Figure 2 we are seeing a single row
from the Events table, but we’ll
need some way of telling the app
server which row we want to see.
Since we’re using the TEvent data
object, we need to provide the
object identifier (OID) for the par-
ticular event we are interested in.
The OID for TEvent happens to be
the EventNo field in the table. In this
example, we pass along the event
number as a URL parameter named
EventNum. In the page template, the
<DATAOBJECT> tag makes use of the

EventNum parameter to set the tag
attribute OID.

Notice the special syntax in the
OID attribute. For the other
<DATAOBJECT> attributes, Class and
Name, the value for those attributes
is taken as a literal string. For the
OID attribute, we do not want the
literal string EventNum. Rather, we
want the contents of the variable
EventNum. So the special syntax of
${<variable>} is taken to mean
‘return the named value’. All URL

parameters and page content
variables, as well as data object
properties, are available as
variables.

Also in Listing 1 we see a new
SML tag called <TEXT>. This tag
simply returns whatever literal
value is between the <TEXT> and
</TEXT> tags. On the surface this
seems like a useless function, but
the <TEXT> tag provides a point
where we can use the ${} syntax to
inject data values. We are using
<TEXT> on this page to display
several properties of the Event
object. We use <TEXT> rather than
<CONTROL> because we only want to
display the values, not provide a
data entry control to manipulate
them.

Display A Data Entry Page
Figure 3 shows a web page that
allows us to modify an entry in the
Events table, and Listing 2 shows
the template for that page. There is
no difference in the URL call
between a page that allows data
entry and a page that does not,
other than the page name itself
obviously. There are some differ-
ences in how the template is

<html>
<head><title>Show Event</title></head>
<body>
<%<DATAOBJECT class="TEvent" name="Event" oid="${EventNum}"/>%>
<H3><%<TEXT>${Event.Event_Name}</TEXT>%></H3>
<%<TEXT>${Event.Event_Description}</TEXT>%>

Date <%<TEXT>${Event.Event_Date}</TEXT>%>

Time <%<TEXT>${Event.Event_Time}</TEXT>%>

Tickets <%<TEXT>$${Event.Ticket_Price}</TEXT>%>
</body>
</html>

➤ Listing 1

➤ Figure 2

<html>
<head>
<title>Modify Event</title>
<SMLScripts>

</head>
<body>
<FORM>
<%<DATAOBJECT class="TEvent" name="Event" oid="${EventNum}"/>%>
<SMLVars>
<H3>Modify Event</H3>
Event Name:

<%<CONTROL type="edit" name="edtName" property="Event.Event_Name"/>%>

Description:

<%<CONTROL type="memo" name="edtDesc" property="Event.Event_Description"
cols="30" rows="6"/>%>

Date:

<%<CONTROL type="edit" name="edtDate" property="Event.Event_Date"/>%>

Time:

<%<CONTROL type="edit" name="edtTime" property="Event.Event_Time"/>%>

Price:

<%<CONTROL type="edit" name="edtPrice" property="Event.Ticket_Price"/>%>

<%
<BUTTON type="submit" caption="Submit">
<ACTION type="update" value="Event"/>
<ACTION type="page" value="EventMain.sml"/>

</BUTTON>
<BUTTON type="reset" caption="Reset"/>

%>
</FORM>
</body>
</html>

➤ Listing 2

12 The Delphi Magazine Issue 52

arranged, however. We still use the
<DATAOBJECT> tag to instantiate the
desired data object in order to
prepopulate the data controls with
current values. We still use the
<CONTROL> tag to define data entry
controls for each of the properties
we want to modify. In Part 1 we saw
how to process these tags to
produce HTML controls. Now we
need to focus on the additional
infrastructure that is needed when
the web page is submitted and the
new data values in the controls
need to be posted back to the
database.

First things first. For a standard
HTML page, values for all the data
entry controls that appear within
the <FORM> tag are sent back to the
web server when the form is sub-
mitted. Normally, the <FORM> tag
would include an Action attribute
that identifies a CGI program to
process the form variables. For an
SML template we do not provide
the Action attribute on the <FORM>
tag; the submit action will be set
programmatically via JavaScript
attached to the Submit button.

Down at the bottom of Listing 2
we see the new tag <BUTTON> being
used to create a submit button and
a reset button. When we process
the <BUTTON> tag for the submit
button, the markup language
engine will include a special
JavaScript function on the page to
set the form submit action pro-
grammatically. The actual submit
action will be a call to our CGI
router program with special URL

parameters to indi-
cate what kind of
action to take. The
<ACTION> subtags
for the button tag
tell us what special
processing to do
when this page is
submitted. In this
example, we want
to update the con-
tents of the Event
object and then
return to the
EventMain.sml
page. The HTML

generated from the <BUTTON> tag for
our submit button is shown in List-
ing 3. When the button is clicked,
we execute the JavaScript function
DoSubmit, which sets the form
parameters and submits the form.

The DoSubmit function is added
to the page automatically by the
markup language engine. However,
we need a way to tell the engine
where to put it in the page. Inside
the <HEAD> section of Listing 2 you’ll
see a tag called <SMLScripts>. This
is an arbitrary placeholder tag that
the markup language engine will
replace with whatever JavaScript
functions are required by the SML
in that template.

Since the form submit action is
set programmatically, we can have
multiple submit buttons on a form
doing different actions. For exam-
ple, we could add a delete button
on this form to delete the event.
Clicking this button would call the
CGI router with the parameter
PI:DELETE=Event.

We have to keep in mind that the
instance of a data object we used to
generate a page is released once
we send the generated page back
to the browser. When a user
submits a page to post changes, we

have to reacquire and reins-
tantiate the same data object again
and set its properties with new
values from the form variables.
When a form is submitted in this
fashion, the only information we
have at our disposal is the vari-
ables on the form and whatever
URL parameters were passed in
the call to the CGI program. How
do we know which form variables
map to which object properties?
For that matter, how do we know
what data object was used to fill
those values in the first place? The
original bindings were determined
in the <CONTROL> tag in the page
template, but all that information
was lost when the SML tags were
replaced with HTML. So we have to
have some way of carrying the
bindings with us in the page.

This binding information must
be available when we submit the
page, so it has to be contained
within an HTML control on the
form. We don’t want it to be visible
to the user, so we’ll use a hidden
control. A hidden control is like
any other HTML control; it holds a
string value, but it is not visible in
the browser. In the template
shown in Listing 2, under the
<DATAOBJECT> tag is an additional
tag called <SMLVars>. This is a
placeholder that will be substi-
tuted with the HTML for this
hidden control we will use to store
data value/property bindings.
Notice that the <SMLVars> tag must
be within the <FORM> tag since we
want this variable to be posted
when the form is submitted.

The value/property bindings
must be compiled when the page is
generated and stored within the
page itself. For each value in an
HTML control, we need to know
the class name of the data object
that produced it, the OID of the

➤ Figure 3

Generated submit button:

<INPUT type=button value=Submit
onclick=DoSubmit("PI:update=Event&PI:page=EventShow.sml&EventNum=8")>

DoSubmit JavaScript function:

function DoSubmit(params) {
document.forms[0].method='post'
document.forms[0].action='../cgi-bin/router.exe?' + params
document.forms[0].submit()

}

➤ Listing 3

December 1999 The Delphi Magazine 13

specific instance of the data object,
and the name of the object prop-
erty itself. Since we have to store
this information in a string, XML is
a logical choice for representing
the data. XML works well for repre-
senting complex data in a string
and we already have XML parsing
technology built into our system
since that is what we are using to
parse the SML tags.

Listing 4 shows the full HTML
page generated from the template
in Listing 2. Notice that the
<SMLVars> tag has been replaced
with a hidden control named
SMLDataBindings. The value for this
control is an XML-formatted string.
Each <INSTANCE> tag describes the
specific data object instance
through the attributes Class, OID
and Name. The Name attribute holds
the name that was given to that
data object instance when the page
was generated. That’s how we’ll
refer to it when we generate the
instructions to modify it. Under the
<INSTANCE> tag are a series of tag
groups that define each HTML
control holding a value from a
property of that data object
instance. In this example, there is
an HTML control on the page that
holds a value from the Event_Name
property of a TEvent data object.
Using this information, we can
instantiate the data object and
copy values from the control

variables into the object’s proper-
ties and save the data back in the
database. This is simply the
reverse process of what we did to
pull the data out of the objects in
the first place.

Making It Happen
Up to now, I’ve basically described
how the system will work from an
external view. Now let’s start to
look at the programming required
to make this work. The core of the
system is the application server,
which we will implement as a
simple COM object. In our COM
object we define a single method
called GetContent which accepts a
single widestring parameter and
returns a widestring. The idea
behind GetContent is that we will
pass all our parameters about the
page request, including URL
parameters and page content vari-
ables, as a single comma-separated
string parameter to the function.
GetContent will then return the
entire HTML page that should be
displayed in response to that
request.

The Router
The CGI router program is very
thin and simplistic. Its only job is to
capture an HTTP request, translate
the HTTP variables into a comma-
separated widestring and call the
GetContent method in our applica-
tion server. Using the Web Broker
components, all we really have to

do is capture the information pro-
vided in the TWebRequest packet,
and set the Content property of the
TWebResponse packet to the value
returned by the app server’s
GetContent method. I won’t go into
details here; there really isn’t that
much to it and the full source code
for the CGI router is on the disk.

It is important to realize, though,
that the router does not do any-
thing but hand off the request to
the app server. The app server is
responsible for all logic and pro-
cessing necessary to produce con-
tent. The router is simply a conduit
between the web server and the
app server through which the web
request flows. Different web serv-
ers may support different means of
capturing HTTP requests. All serv-
ers should handle CGI, but you
may want to tune the performance
by using a server-specific technol-
ogy such as ISAPI or DSAPI. By
keeping the router reduced to this
simple communication role, we
can easily substitute other mecha-
nisms to hook into the web server
without impacting the core page
generation code in the application
server.

The COM Object
As we said before, the GetContent
method is the primary point of
communication with our COM
object. A single comma-separated
string of URL and content vari-
ables is passed into this function.

<html>
<head>
<title>Modify Event</title>
<SCRIPT>
function DoSubmit(params) {
document.forms[0].method='post'
document.forms[0].action='../cgi-bin/router.exe?' +
params

document.forms[0].submit()
}

</SCRIPT>
</head>
<body>
<FORM>
<INPUT type=hidden name=SMLDataBindings value='
<databindings>
<instance class="TEvent" oid="8" name="Event">
<bindings>
<binding>
<control>edtName</control>
<property>Event_Name</property>

</binding>
<binding>
<control>edtDesc</control>
<property>Event_Description</property>

</binding>
<binding>
<control>edtDate</control>
<property>Event_Date</property>

</binding>
<binding>
<control>edtTime</control>

<property>Event_Time</property>
</binding>
<binding>
<control>edtPrice</control>
<property>Ticket_Price</property>

</binding>
</bindings>

</instance>
</databindings>
'>
<H3>Modify Event</H3>
Event Name:

<INPUT type="text" value="Women's High Dive Finals"
name=edtName size=30 maxlength=30>

Description:

<TEXTAREA name=edtDesc maxlength=100 cols=30 rows=6>
World premiere event. All comps aresuspended.

</TEXTAREA>

Date:

<INPUT type="text" value="6/19/96" name=edtDate>

Time:

<INPUT type="text" value="10:00 PM" name=edtTime>

Price:

<INPUT type="text" value="7.50" name=edtPrice>

<INPUT type=button value=Submit
onclick=DoSubmit("PI:update=Event&PI:page=EventMain.sml")>
<INPUT type=reset value=Reset>
</FORM>
</body>
</html>

➤ Listing 4

14 The Delphi Magazine Issue 52

GetContent scans this list of
variables and determines whether
the request is a page request
(PI:PAGE) or a submit request
(PI:UPDATE, PI:DELETE, etc). These
are the two main branches of
processing a request, so we break
them out into two separate classes:
TPageHandler and TSubmitHandler.
TPageHandler does all the work of
producing an HTML page from a
template. TSubmitHandler does all
the work of posting page values
back to the original data objects.

Page Generation
TPageHandler is merely a container
for the core tag substitution logic
we built in October. It is responsi-
ble for loading the page template
from an external file, parsing out
the SML tags, and calling the tag
resolver classes to interpret the
tags. Delphi’s TPageProducer com-
ponent is a handy tool to start with
for parsing SML tags from a tem-
plate. TPageProducer is designed to
read an HTML document and fire
an event when certain types of tags
are found. The tag can be replaced
with dynamically generated text
within the event handler. This is
exactly what we want to do with
SML tags, but there is a catch: SML
tags are delimited with <% and %>
markers. Unfortunately, TPage-
Producerdoes not respond to these
delimiters.

It turns out all we really have to
do is create a custom descendant
of TPageProducer and tweak it to
parse based on <% and %> delimit-
ers. We’ll call our new component
TusPageProducer. We simply need
to override the ContentFromStream
method. This method already
contains logic to find tags that are
denoted by a < character followed
by a # character. So we simply have

to add parallel logic to look for tags
denoted by a < character followed
by a % character. When we find
such a tag, we’ll expose it to a new
event handler called OnScripting-
Block which is defined as:

procedure (Sender: TObject;

Body: string; var ReplaceText:

string) of object;

TPageHandler simply loads the page
template into a TusPageProducer
component and every time a <%
token is found, the OnScripting-
Block event is fired. Within this
event, we have the SML tags avail-
able in the Body parameter and we
pass this into the tag resolver code
we built last time to return the gen-
erated HTML, which we pass back
through the ReplaceText parame-
ter. The TusPageProducer compo-
nent replaces our SML tags with
the generated HTML within the
document. The source of this com-
ponent is on the companion disk in
the UHTTPApp.pas file.

Changes To TTagResolver
Obviously we’ll need to expand the
implementation of TTagResolver to
accommodate the extra functional-
ity we discussed earlier. We’ve
added support for primitive
expression evaluation with the
${<variable>} syntax. Coinci-
dentally, that also implies that tag
resolvers need access to the URL
parameters of the page request.
For example, in Figure 2 the URL
parameter EventNum needs to be
available to the <DATAOBJECT> tag
resolver to load that specific event
into the object. Finally, the tag
resolvers could generate data that
is not part of the HTML that
replaces the tag. I’m talking about
the possibility of including the
DoSubmit JavaScript function and
the data bindings that must be

generated for modifiable data.
This information is created by the
tag resolver, but is not written to
the page in place of the tag itself.
The data must be accumulated
internally until the whole page has
been processed, and then written
in specially designated spots on
the page. Generated scripts are
written where we’ve put the
<SMLScripts> tag, and generated
data bindings go where we’ve put
the <SMLVars> tag.

We will create a class called
TSMLContainer which will serve as
the workspace for the TTag-
Resolver classes. A TTagResolver
object is created and destroyed for
each SML tag encountered, so we
need an external place to hold our
working data. A single instance of
the TSMLContainer class will be cre-
ated for the page and all instances
of TTagResolver will hold a pointer
to this container. The TSML-
Container class will hold lists for
generated scripts and data bind-
ings. It will also hold the list of vari-
ables available to that page and a
list of data objects that have been
instantiated for that page.

Expression Handling
With the list of variables and the
list of data objects, support for the
expression syntax ${<variable>} is
fairly simple. The <variable> may
be either a named URL variable in
our variable list, or an object prop-
erty reference. We already know
how to retrieve a value from an
object property when we
constructed the <CONTROL> tag in
Part 1.

Listing 5 shows the Evaluate-
Expression function we added to
TTagResolver. To support expres-
sions in a tag attribute or body, we
simply use this function to convert
the expression. If the value passed
in does not have the ${} syntax,
then it is returned as a literal value.
Otherwise the value of the corre-
sponding page variable or object
property is returned.

Handling Page Submits
We do not have to change much in
the TDataObject base class to sup-
port read/write objects. For our
purposes here, TDataObject is a

function TTagResolver.EvaluateExpression(aExpression: string): string;
begin
Result := Trim(aExpression);
if Copy(Result, 1, 2) = '${' then begin
aExpression := Copy(Result, 3, Length(Result) - 3);
if FContainer.Variables.IndexOfName(aExpression) <> -1 then
Result := FContainer.Variables.Values[aExpression]

else
if Pos('.', aExpression) <> 0 then
Result := FContainer.ObjectCache.GetPropertyValue(aExpression)

else
raise Exception.CreateFmt('Unknown expression: %s', [aExpression]);

end;
end;

➤ Listing 5

16 The Delphi Magazine Issue 52

simple wrapper around a TQuery.
We access the query fields through
the PropertyByName method. This
method returns a TField so we can
write new values to the TField as
easily as we can read existing
values from it. We only need to
ensure that the SQL statement
we’ve provided for the object is a
‘live’ query. In addition we’ve
added a few more features to
TDataObject to put the dataset into
edit or insert mode, delete a row,
and post changes. These are all
simple wrappers around TQuery
functionality, so you can look to
the sample source code on the disk
for the details.

The TSubmitHandler class takes
care of requests to write changes
back to data objects and is fairly
straightforward. All the informa-
tion we have to work with is given
to us in the form of a string list of
variable=value pairs. All the URL
parameters and page content vari-
ables for the page we just submit-
ted are in this list. One value of
critical importance is the
SMLDataBindings variable that was
created during page generation
(see top of Listing 4). This is the
road map for processing the
request. Since this is XML format-
ted data, we can use the
TusXMLParser class we created last
time to transform this raw data
into a structured XML document.

We get into the TSubmitHandler
object by having a PI:UPDATE
parameter on the URL. The value of
this parameter tells us which data
object to update. So we have two
main tasks: instantiate the named
data object and set its properties
according to the road map found in
SMLDataBindings. Given the name of
the data object, we loop through
our XML document until we find an
<INSTANCE> element whose Name
attribute matches the one we are
looking for. Once found, the Class
attribute will tell us the class name
of the data object. From that we
can transform the class name into
a class type using Delphi’s GetClass
function. Then we can instantiate
the data object and load it with the
specific OID given to us in the OID
attribute. The code for TSubmit-
Handler can be found in the

svrSubmitHandler.pas unit on the
companion disk.

Once we have the data object, all
we need to do is loop through the
<BINDINGS> information and call the
object’s PropertyByName function to
set the value of each property.
PropertyByName returns a TField
object, so we must use the TField.-
AsVariant property to set data,
since our values all come to us in
the form of strings. AsVariant will
perform the necessary data con-
versions from string to numeric,
date, time, etc. Since the data
object is really just a wrapper
around a TQuery, once we’ve set the
properties, we just post the
dataset to write the changes back
to the database.

Obviously there is an issue of
concurrency here. What if another
user modified the database con-
tents after we generated the page,
but before the page was submit-
ted? The most straightforward
approach is to rely on optimistic
locking. Each record has an addi-
tional field, like a timestamp.
Whenever an update is made to the
record, the timestamp field is
updated. When reading data to
generate a page, we store the
timestamp of the data in the data
binding info for that object. When
we submit that page, if the current
timestamp of the data no longer
matches the timestamp we cap-
tured when we generated the page,
somebody changed the data. At

that point, we can return an error
page that directs the user to try
again with the current data.

Conclusion
What I’ve provided here is a very
simplistic model for a web page
system. There are certainly many
more details to work out for this to
be turned into a viable production
system. My goal here was simply
to focus on the mechanics of inter-
preting a custom tag language in
order to move data in and out of
simplistic data objects. The advan-
tage of this approach over other
technologies is a clear, clean
distinction between the page
authoring work and the data
processing work.

Steve Troxell is a software
engineer with Ultimate Software
in the USA. He can be reached
via email at Steve_Troxell@
UltimateSoftware.com

	In Our Last Episode
	Where We Go From Here
	Displaying A Read-Only Page
	Display A Data Entry Page
	Making It Happen
	The Router
	The COM Object
	Page Generation
	Changes To TTagResolver
	Expression Handling
	Handling Page Submits
	Conclusion

